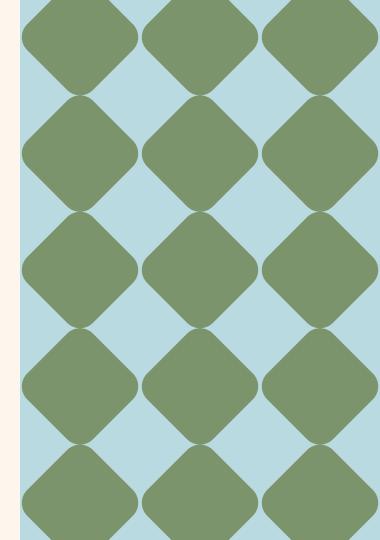


A black hole's gotta eat too: accretion and feedback on LLAGN

Iván E. López


Università di Bologna (UNIBO) - INAF/OAS

Why is so important the BH accretion?

Accretion (and mergers) are the mechanisms that make a BH to growth.

- BH seed
- BH grow as its host galaxy
- BH accretion impact on galaxy evolution

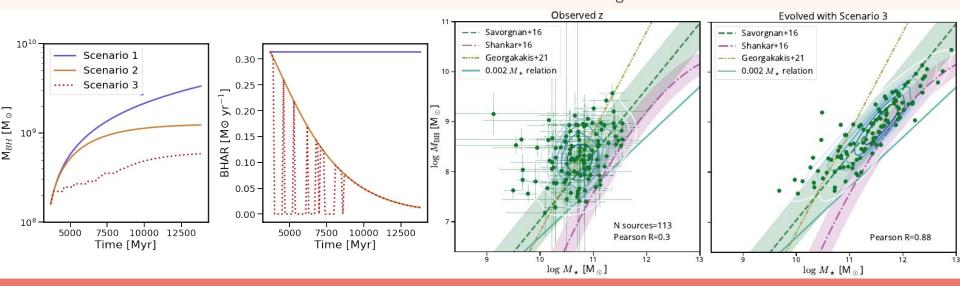
Accretion and feedback are connected

Works

- On SMBH-host coevolution:
 - López IE et al. (2023)
- On LLAGN properties:
 - López IE (in prep)
- A study-case of LLAGN Feedback:
 - Ogle P, López IE, et al (2023)

On SMBH-host coevolution

Studying the accretion until z<2.5

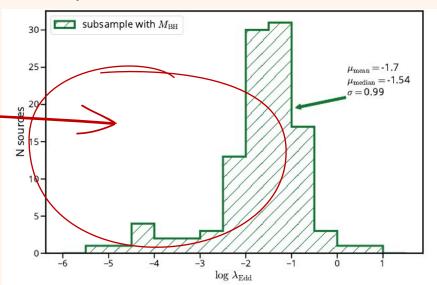

In **López+23** we studied the AGN and host galaxy properties through SED fitting and spectra fitting on the miniJPAS footprint.

The basics:

- SED Fitting using CIGALE with X-ray+UV+56 narrow optical filters+IR
- Got λ_{EDD} , M_{BH} , \dot{M}_{BH} M_{\star} , SFR
- Compare λ_{FDD} with its proxy L_{χ}/M_{\star} . Large difference (0.6 dex) and \neq distr
- We studied diverse co-evolution scenarios to arrive from the observed parameters to the ones expected in the local Universe

Forward modeling

- Scenario 3 reproduces expected local relations:
 - SFR follows the fitted SFH
 - BHAR \propto SFR with an energy budget $(E_{BH} > E_{gb})$

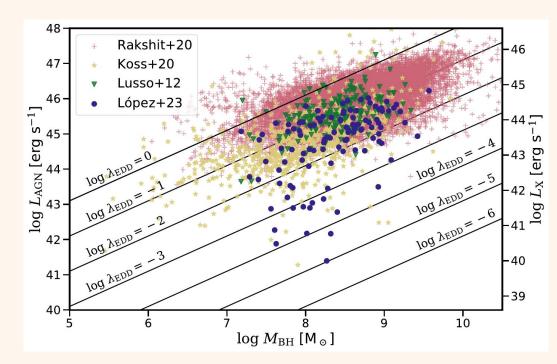


Studying the biases

In **López+23** we studied the AGN and host galaxy properties through SED fitting and spectra fitting on the miniJPAS footprint.

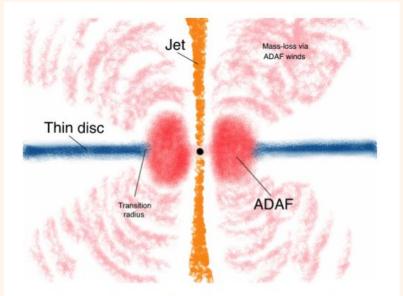
But:

- What is happening to $\log \lambda_{EDD} < -3$?
 - Low-luminosity AGN
 - Adult phase



2. On LLAGN properties

Where is the LLAGN population?

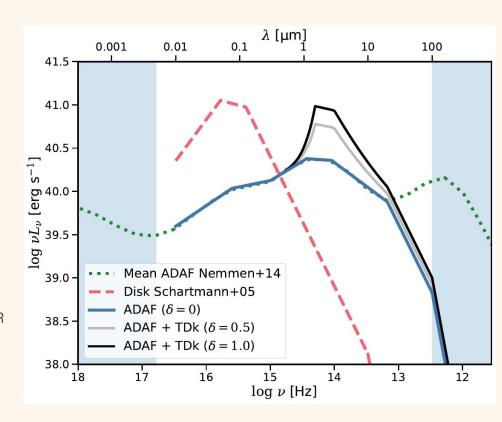

This is an usual problem in AGN studies, even for large surveys like:

- SDSS QSO (Rakshit+20)
- BASS (Koss+22)

LLAGN - Accretion

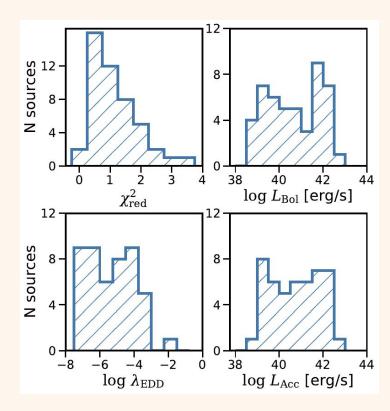
- What is happening to $\log \lambda_{EDD} < -3$?
 - Low-luminosity AGN
 - possible accretion by:
 - Truncated disk (TDk)
 - Advection Dominated Accretion Flow (ADAF)
- How far they are from QSOs?

Figure 1. Cartoon illustrating the model for the central engines of LLAGNs. It consists of three components: an inner ADAF, an outer truncated thin disc and a relativistic jet.

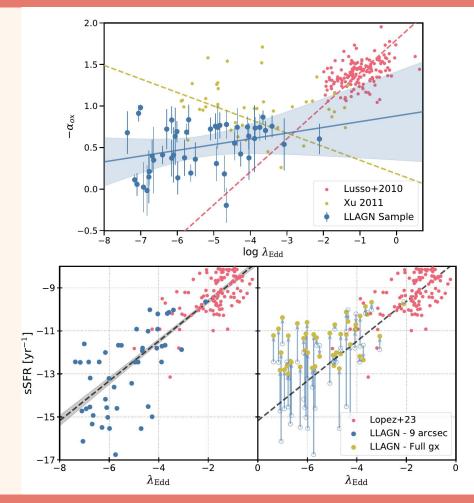

Nemmen+14

LLAGN - Accretion

- How far they are from a typical accretion disk?
 - o Optically thick, geometrically thin disk are a sum of Blackbodies
 - A TDk will not have the inner and hotter orbits, so less UV photons
 - ADAFs are Synchrotron + Bremsstrahlung + IC
 - Different SEDs
 - So current CIGALE cannot fit them!


Our approach

- IRX-CIGALE (López in prep.)
- Change the seed photons:
 - ADAF + Truncated Disk (Nemmen+14)
- Change the X-ray prior:
 - Instead of α_{ox} , we use L_{χ} - L_{IR} (Asmus+15)


Our results

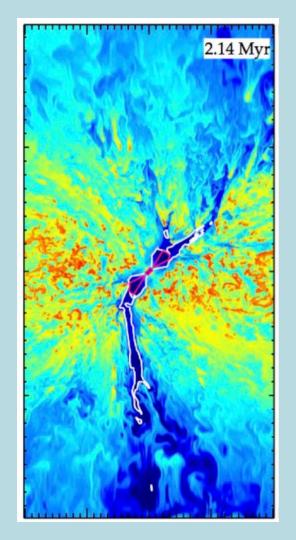
- 52 local LLAGN with X-ray fitting (Williams+22,Osorio-Clavijo+22,Gonzalez-Martin+08,+)
- Performed 9" photometry from UV to FIR
- IRX-Cigale SED fitting allow us arrive to:
 - \circ log $\lambda_{EDD} \sim -7$
 - \circ log L_{AGN} ~ 38 erg/s

Our results

- Calculate a X-ray Bolometric correction up to 10³⁸ erg/s
- Study the modeled $\alpha_{\rm ox}$ for different accretion regimes
- Similar results even in full galaxy contamination
- Compare the sSFR for the 9" aperture vs the full galaxy

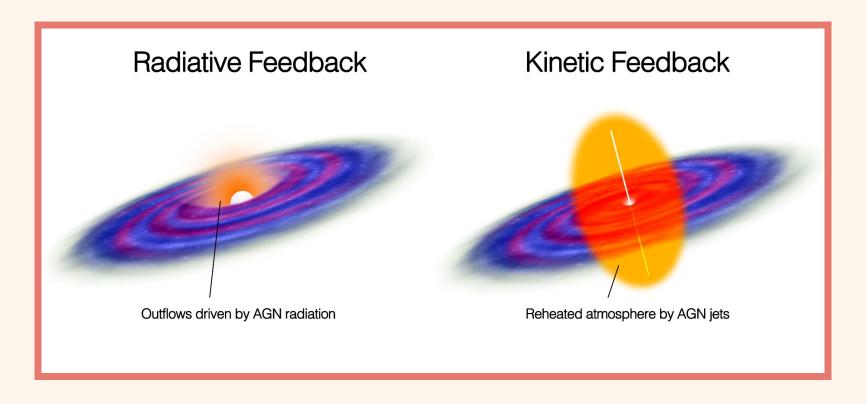
3.

A LLAGN feedback case


Is LL-AGN feedback relevant to galaxy evolution?

AGN Feedback can impact the:

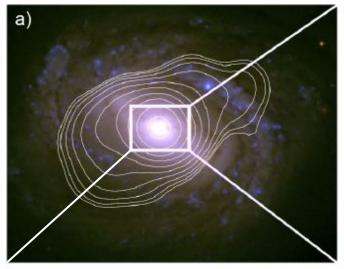
- ISM with winds (radiative mode)
- ICM/ISM with jets (kinetic mode)

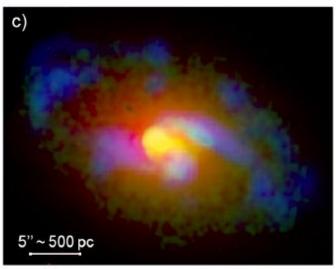

LLAGN accretion:

- LLAGN winds can also suppress SF (Almeida+23)
- Low-power jets (P_{jet}~10³⁶⁻³⁸W) can get trapped in the host gx, heating the ISM (Mukherjee+16)

AGN feedback:

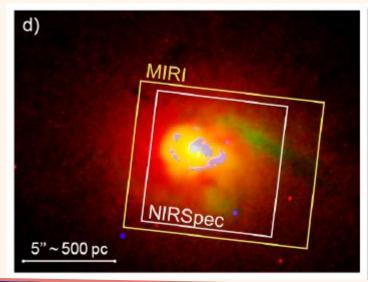
• Self-regulated cycle that connects subpc to Mpc scale




M58 a case for LLAGN Feedback

- Warm cocoon at center kpc full with H₂
- Supressed SF there without PAH destruction

LLAGN accretion:


- LLAGN winds can also suppress SF (Almeida+23)
- **Low-power jets** (P_{jet}~10³⁶⁻³⁸W) can get trapped in the host gx, heating the ISM (Mukherjee+16)

M58 a case for LLAGN Feedback

- Details in Ogle, López, et al. 2023
- Next year:
 - 17hs in JWST to resolve the impact at ~10pc scale
 - 150ks in Chandra ACIS HETG to resolve ADAF winds
- Resolve ADAF vs jet

ID ▼	Program Title ▼	PI & Co- PIs	Access Period (months)	Prime/ Parallel Time (hours)	Instrumer Mode
3671	Radio Jet Feedback in the Nearby Spiral Galaxy M58	Pl: Ivan Lopez	12	16.73/0.19	MIRI/Imaging MIRI/MRS NIRCam/Imag NIRSpec/IFU

Summary

- To assess the impact of LLAGN in galaxy evolution we need:
 - Understand the demography of LLAGN
 - IRX-Cigale as a tool to do SED Fitting (*López in prep*)
 - J-PAS + eRosita and Lemmings to go for a LLAGN/SMBH census
 - Understand how? ADAF winds, trapped jets?
 - M58 as a case test (Ogle+23 + JWST/Chandra future data)
 - RevealLLAGN (7 other gx observed with JWST)