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Why look at mergers? | e -

Galactic gas must lose 99.9%
of its angular momentum

through some mechanism in

order to accrete onto the . L
central black hole. ’

M87. Image credit: NASA/JPL-Caltech/IPAC/Event Horizon Telescope Collaboration



Why look at mergers?
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Big questions

e Arethere correlations between AGN activity and galaxy mergers?

e Arethese correlations related to other properties (e.g. SFR, AGN obscuration)?
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Big questions and approaches

e Arethere correlations between AGN activity and galaxy mergers?

e Arethese correlations related to other properties (e.g. SFR, AGN obscuration)?

simulations supervised training
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Paper 1: supervised learning on obscured AGN hosts

simulated galaxy images

trained neural network
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Paper 1: supervised learning on obscured AGN hosts

simulated galaxy images

+
physical merger labels

trained neural network
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Paper 1: supervised learning on obscured AGN hosts

What does it see on the real galaxies?
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Paper 1: supervised learning on obscured AGN hosts

What does it see on the real galaxies?

800
7 E=1 AGN hosts
/
/ trol
1.0 Seyfert ! 600 Contro's
S400
=
—~ 05
Q 200
S~
~
o
2 013 i1 10
= 0.0 = - =
= log(sSFR/yr~1)
o 05 Star-Forming LINER
(@]
[e]
3
o
-1.0 o
L ©
-15 —i.0 —05 00 0.5

log([NIl]gsss/Ha)



Paper 1: supervised learning on obscured AGN hosts
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Paper 2: contrastive learning on unobscured AGN hosts

Goal: train classifier that ignores point sources



Paper 2: contrastive learning on unobscured AGN hosts




Paper 2: contrastive learning on unobscured AGN hosts




Paper 2: contrastive learning on unobscured AGN hosts

Original Crop/Scale Rotate/Reflect Noise Blur
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Paper 2: contrastive learning on unobscured AGN hosts

Original Crop/Scale Rotate/Reflect Noise Blur

just throw in more treat augmentations of the
augmentations with same same image the same, but no
labels (supervised) overall labels (self-supervised)
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Paper 2: contrastive learning on unobscured AGN hosts

Let’s look at some latent spaces.



Paper 2: contrastive learning on unobscured AGN hosts

Let’s look at some latent spaces.
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Paper 2: contrastive learning on unobscured AGN hosts

Let’s look at some latent spaces.
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Paper 2: contrastive learning on unobscured AGN hosts

Outstanding questions:

e Where do the mergers live in latent space? Are they outliers?
e How strong of point sources can we add before the model breaks down?

e What conclusions can we ultimately draw about AGN host morphologies?
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Where are we now?

Paper 1: Mergers and star
formation in obscured hosts
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Where are we now?

Paper 1: Mergers and star

formation in obscured hosts
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Where are we now?

Paper 1: Mergers and star
formation in obscured hosts
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