The role of galaxy mergers in fuelling active galactic nuclei

Mathilda Avirett-Mackenzie, Carolin Villforth, Marc Huertas-Company, Stijn Wuyts, Dave Alexander, Silvia Bonoli, Andrea Lapi, Ivan Lopez, Cristina Ramos Almeida, Francesco Shankar, et al

Image credit: ESA/Hubble & NASA

PhD: expectation

Do some science		Do some more science		Write a thesis		DONE!!
Write a paper	Write a paper		Write more papers			

PhD: expectation

Why look at mergers?

Galactic gas must lose 99.9% of its angular momentum through some mechanism in order to accrete onto the central black hole.

Why look at mergers?

Fig. 6, Alexander & Hickox 2012

Big questions

- Are there correlations between AGN activity and galaxy mergers?
- Are these correlations related to other properties (e.g. SFR, AGN obscuration)?

Big questions and approaches

- Are there correlations between AGN activity and galaxy mergers?
- Are these correlations related to other properties (e.g. SFR, AGN obscuration)?

simulated galaxy images

+ physical merger labels

trained neural network

trained neural network

∽^CC__→

simulated galaxy images

physical merger labels

 \rightarrow

What does it see on the real galaxies?

What does it see on the real galaxies?

Goal: train classifier that ignores point sources

just throw in more augmentations with same labels (supervised) treat augmentations of the same image the same, but no overall labels (self-supervised)

Let's look at some latent spaces.

Let's look at some latent spaces.

Let's look at some latent spaces.

Outstanding questions:

- Where do the mergers live in latent space? Are they outliers?
- How strong of point sources can we add before the model breaks down?
- What conclusions can we ultimately draw about AGN host morphologies?

Paper 1: Mergers and star formation in obscured hosts

Paper 1: Mergers and star formation in obscured hosts

Paper 2: Morphologies of unobscured hosts

Paper 1: Mergers and star formation in obscured hosts

Paper 2: Morphologies of unobscured hosts

Secondments

Secondments