

MULTIPHASE OUTFLOWS IN LOCAL TYPE-2 QUASARS

Giovanna Speranza

Supervisors: Cristina Ramos Almeida & José A. Acosta with the QSOFEED team

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sktodowska-Curie grant agreement No 860744

MULTIPHASE OUTFLOWS IN LOCAL TYPE-2 QUASARS

THE QSOFEED TEAM (IAC)

High-luminosity AGN $(L_{bol} \sim 10^{45.5} \text{ erg/s}) \rightarrow \text{to increase}$ the probability of powerful outflows;

Nearby (z<0.14) \rightarrow to resolve outflows;

Type-2 AGN \rightarrow broad AGN and continuum naturally obscured by dust;

Diverse radio & optical morphologies → impact on outflows?

48 QSO2s from the SDSS catalogue of **Reyes+08**

SOURCE CHARACTERISTICS

- All sources are Type-2 Quasars (QSO2s, L_[O III] > 10^{8.5} L_☉ Zakamska+03, Reyes+08) located in the local Universe (0.08 < z < 0.12);
- They are radio-quiet according to their L_{1.4GHz}/L_[O III] ratios (Xu+1999);
- The SFRs varies from 12 M_{\odot} yr⁻¹ to 69 M_{\odot} yr⁻¹ (Ramos Almeida+22);
- Their morphologies are diverse: barred spirals and early type mergers/interacting galaxies (Ramos Almeida+22, Pierse+23).

Speranza+24

DATA & INSTRUMENTS

MEGARA

multi-espectrógrafo en GTC de Alta Resolución para Astronomía

Location: Gran Telescopio de Canarias (La Palma) Wavelength range: 5143.74-6168.19 Å (optical) Spectral resolution: 5850 (~ 54 km/s) Field of view: 12.5" x 11.3"

OBSERVATIONS

MEGARA (see Speranza et al. 2024)

ALMA (see Ramos Almeida et al. 2022)

AGN OUTFLOWS IN 5 LOCAL TYPE-2 QUASARS: EXPLORING THE NUCLEAR [O III] EMISSION

Extracted with an aperture of 1.2" (seeing = 1.1")

AGN OUTFLOWS IN 5 LOCAL TYPE-2 QUASARS: EXPLORING THE NUCLEAR [O III] EMISSION

We measure blueshifted velocities up to -430 km s⁻¹ and FWHM up to 2240 km s⁻¹;

The profiles suggest complex kinematics due to AGN feedback and to galaxy interactions.

4 out of the 5 QSO2s have spatially resolved [O III] emission

 $-2000 < v_{out} < -400 \, km \, s^{-1}$

Jets might be driving outflows even in radio-quiet AGNs.

Radio contours from the VLA image at low resolution (~ 1 arcsec beam)

Radio contours from the VLA image at low (~ 1 arcsec beam) and high resolution (~ 0.25 arcsec beam)

∆RA[arcsecs]

-2

Δδ [arcsecs]

J1430

Radio contours from the VLA image at low (~ 1 arcsec beam) and high resolution (~ 0.25 arcsec beam)

Radio contours from the VLA image at low (~ 1 arcsec beam) and high resolution (~ 0.25 arcsec beam) Higher gas excitation and velocity dispersion perpendicular to the jet in the CO(3-2)/CO(2-1) line ratio

Audibert+23

Radio contours from the VLA image at high resolution (~ 0.25 arcsec beam) in white and T_{32} / T_{21} contours in black

Higher gas excitation and velocity dispersion perpendicular to the jet in the CO(3-2)/CO(2-1) line ratio

Audibert+23

AGN OUTFLOWS IN 5 LOCAL TYPE-2 QUASARS: A COMPARISON WITH ALMA IN SCALING RELATIONS

AGN OUTFLOWS IN 5 LOCAL TYPE-2 QUASARS: A COMPARISON WITH ALMA IN SCALING RELATIONS

Ramos Almeida et al. 2022

AGN OUTFLOWS IN 5 LOCAL TYPE-2 QUASARS: A COMPARISON WITH ALMA IN SCALING RELATIONS

Ramos Almeida et al. 2022 + Speranza et al. 2024

THE AGN FEEDBACK: RECENT RESULTS

Positive and negative feedback observed simultaneously on the young stellar population (YSP)

YSP ages 1 < Myr < 2 found to rise at ~0.9 kpc from the center.

Outflow dynamical timescale: ~1 Myr.

Bessiere & Ramos Almeida 2022

THE AGN FEEDBACK: NEW PERSPECTIVE

JWST proposal accepted (PI: Ramos Almeida) Keck/KCWI proposal accepted (PI: Canalizo)

Studying the YSP distribution respect with the outflowing maps

MAIN CONCLUSIONS

Speranza et al. 2024

We spatially resolve 4 of the 5 outflows detected, measuring radii between 3.1 kpc and 12.6 kpc;

Using the [S II] lines we measure densities between 300 cm⁻³ and 1000 cm⁻³, and between 1600 cm⁻³ and 9800 cm⁻³ using the trans-auroral lines;

In the QSO2 with extended radio emission detected in VLA data, this emission is aligned with the ionized outflows.

Combining ALMA (Ramos Almeida+22) and MEGARA observations we find lower outflow mass rates for the ionized and cold molecular outflows than those predicted from observational scaling relations (e.g. Fiore+17).

Scenario 1 \rightarrow Mass outflow rate does not depend only on the Bolometric luminosity (coupling with the jets and outflow orientation may be considered). Scenario 2 \rightarrow The scaling relation is real but should be re-scaled. Scenario 3 \rightarrow Scenario 1 + Scenario 2.

1st year

- Two observation runs at the Isaac Newton Telescope
- 1st paper published (**Speranza+21**)

|--|

- Two observation runs at the Isaac Newton Telescope
- 1st paper published (Speranza+21)
- Two months secondment at UNIBO working on Chandra observations
- 2nd paper published (Speranza+22)
 - Three months of Prewarp secondment with Iván L.

giovanna.speranza@iac.es

• Two observation runs at the Isaac Newton Telescope

1st year

- 1st paper published (Speranza+21)
- Two months secondment at UNIBO working on Chandra observations
- 2nd paper published (Speranza+22)
 - Three months of Prewarp secondment with Iván L.

• Accepted NIFS/Gemini proposal

3rd year

- One month Nature astronomy secondment with Luca
- One month ULEI + one month UNIBO secondments working with Blessing & Evgenii
- 3rd paper published (Speranza+24)

TIMELINE

2nd year

1st year	2nd year	3rd year

- Two months secondment at UNIBO
- Accepted NIFS/Gemini proposal
- Two observation runs at the Isaac working on Chandra observations One month Nature astronomy Newton TeleTope DAYS TO THE THESIS DEFENSE th Luca
- 1st paper published (Speranza+21)
- Three months of Prewarp secondment with Iván L.

- One month Leiden + one month Bologna secondments working with Blessing & Evgenii
- 3rd paper published (Speranza+24)

giovanna.speranza@iac.es

BACKUP SLIDES

EMISSION LINE ANALYSIS

Hervella Seoane+23

RECENT WORKS

Local ultraluminous infrared galaxies (ULIRGs)

Local type 2 Seyferts

Davies+20

giovanna.speranza@iac.es

Lamperti+22

THE AGN FEEDBACK: OBSERVATIONAL EVIDENCES

Ramos Almeida & Ricci 2017

In the optical band (ionized emission);
In the near infrared band (ionized and warm molecular emission).

AGN WINDS IN 5 LOCAL TYPE-2 QUASARS: **RESIDUAL INSPECTION**

We tested whether the ionized outflows are spatially resolved

AGN WINDS IN 5 LOCAL TYPE-2 QUASARS: **RESIDUAL INSPECTION**

We tested whether the ionized outflows are spatially resolved

Residual excess = RESOLVED [O III] emission

Same method as Carniani et al. 2013

AGN WINDS IN 5 LOCAL TYPE-2 QUASARS: **RESIDUAL INSPECTION**

We tested whether the ionized outflows are spatially resolved

AGN WINDS IN 5 LOCAL TYPE-2 QUASARS: RESIDUAL INSPECTION

AGN WINDS IN 5 LOCAL TYPE-2 QUASARS: **RESIDUAL INSPECTION**

26 Oct 2023

AGN WINDS IN 5 LOCAL TYPE-2 QUASARS:

26 Oct 2023

AGN WINDS IN 5 LOCAL TYPE-2 QUASARS: THE EXTENDED EMISSION

26 Oct 2023

OUTFLOW EXTENSION

giovanna.speranza@iac.es

OUTFLOW EXTENSION

OUTFLOW PROPERTIES

	1	106		D		
ID	log n _e *	$M_{out} \times 10^{\circ}$	R _{out}	PA	Vout	\mathbf{M}_{out}
	$[cm^{-3}]$	$[M_{\odot}]$	[kpc]	[°]	$[{\rm km}~{\rm s}^{-1}]$	$[\mathrm{M}_{\odot}~\mathrm{yr}^{-1}]$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
J1100	$(3.0^{+0.09}_{-0.09})_{[S II]}$	$8.72^{+2.00}_{-1.63}$	$5.1^{+0.2}_{-0.3}$	63	-1236^{+358}_{-441}	$6.5^{+1.5}_{-1.2}$
J1356	$(2.51^{+0.1}_{-0.1})_{[S II]}$	$35.01^{+6.82}_{-5.40}$	$12.6^{+0.1}_{-0.5}$ $6.8^{+3.7}_{-1.8}$	197 200	-631^{+145}_{-190} 483^{+178}_{-135}	$6.1^{+1.1}_{-0.9}$
J1430	$(3.01^{+0.18}_{-0.18})_{[S II]}$	$4.64^{+1.73}_{-1.14}$	$3.7^{+0.4}_{-0.2}$ $3.1^{+0.3}_{-0.3}$	65 198	-760^{+226}_{-254} 529^{+217}_{-159}	$3.3^{+1.0}_{-0.7}$
J1509	$(2.85^{+0.1}_{-0.1})_{[S II]}$	$4.00^{+1.04}_{-0.83}$	$3.8^{+0.3}_{-0.2}$	320	-1289^{+274}_{-317}	$4.2^{+1.0}_{-0.8}$
ID	log n _e **	$M_{out} \times 10^6$	R _{out}	PA	v _{out}	M _{out}
	$[cm^{-3}]$	$[M_{\odot}]$	[kpc]	[°]	$[{\rm km}~{\rm s}^{-1}]$	$[\mathrm{M}_{\odot}~\mathrm{yr}^{-1}]$
J1100	$(3.99^{+0.07}_{-0.08})_{TA}$	$0.89^{+0.16}_{-0.15}$	$5.1^{+0.2}_{-0.3}$	63	-1236^{+358}_{-441}	$0.7^{+0.1}_{-0.1}$
J1356	$(3.21^{+0.00}_{-0.15})_{\rm TA}$	$6.99_{-1.52}^{+0.23}$	$12.6^{+0.1}_{-0.5}$ $6.8^{+3.7}_{-1.8}$	197 200	-631^{+145}_{-190} 483^{+178}_{-135}	$1.2^{+0.1}_{-0.2}$
J1430	$(3.24^{+0.05}_{-0.3})_{TA}$	$2.73_{-0.99}^{+0.25}$	$3.7^{+0.4}_{-0.2}$ $3.1^{+0.3}_{-0.3}$	65 198	$-760^{+226}_{-254} 529^{+217}_{-159}$	$1.6^{+0.1}_{-0.6}$
J1509	$(3.41^{+0.11}_{-0.21})_{\rm TA}$	$1.10_{-0.42}^{+0.32}$	$3.8^{+0.3}_{-0.2}$	320	-1289^{+274}_{-317}	$1.1_{-0.4}^{+0.3}$

THE ROLE OF AGN FEEDBACK IN SIX LOCALS TYPE-2 QUASARS

Outflow properties? Ongoing interactions? Connection with the radio jets? → visit my poster (n. 410)

A DETAILED STUDY ON J0945: SOURCE CHARACTERISTICS

Isaac Newton Telescope image

• J0945 is a Type-2 Quasar (QSO2, i.e., L [O III] > $10^{8.5}$ L₀, Reyes+2008) located in the local Universe (z = 0.128);

- It is a radio-quiet source according to Lal & Ho 2010;
- Its stellar mass is $1.2 \times 10^{10} M_{0}$ with a SFR of 73 $M_{0} \text{ yr}^{-1}$ (Jarvis+2020);
- The bolometric luminosity measured by Harrison+2014 is $L_{bol} = 10^{45.5} L_0$ while Jarvis+2021 measured $L_{1.4GHz} = 10^{24.3} W Hz^{-1}$;
- J0945 has an irregular morphology and the observation of a tidal tail is a signature of a galaxy merger/interaction.

A DETAILED STUDY ON J0945: WHAT WE FOUND

- 2. An outflow extension of $R_{out} \sim 3.4$ kpc with a mass outflow rate of $\dot{M}_{out} = 51$ M_{0} yr⁻¹, following the formula proposed in **Rose+2018**;
- 3. A radio emission co-spatial to the innermost outflow emission;
- 4. An agreement with powerful sources collected in Fiore+2017;

All details in Speranza et al. 2022

 $\text{Pa}\alpha$ flux mapemission between the central range of velocity (-100 & +100 km s^-1) with the σ contours of the HST image superimposed

THE 5 QSO2 OBSERVED WITH MEGARA: CONCLUSIONS

To investigate the mechanisms driving the outflows and their impact we have to measure the mass and energy outflow rates (\dot{M}_{out} and \dot{E}_{kin}).

Following Rose+2018:
$$\dot{M}_{out} \alpha = \frac{\dot{V}_{out}}{n_e R_{out}}$$
 Velocity shift measured from the narrow component of the nuclear spectrum. $V_{out, max} = V_{out}$ - FWHM/2 (Fluestch et al., 2019)

According to Harrison+2014 & Ramos Almeida+2019: $\dot{E}_{kin} = \frac{1}{2} \dot{M}_{out} (v_{out}^2 + 3\sigma^2)$

A DETAILED STUDY ON J0945: THE EXTENDED EMISSION

VORONOI TESSELLATION

Signal-to-noise higher than the original following the procedure described by Cappellari & Copin (2003).

A DETAILED STUDY ON J0945: THE EXTENDED EMISSION

VORONOI TESSELLATION

Signal-to-noise higher than the original following the procedure described by Cappellari & Copin (2003).

A DETAILED STUDY ON J0945: WHAT WE FOUND

- 1. An outflow extension of $R_{out} \sim 3.4$ kpc with a mass outflow rate of $\dot{M}_{out} = 51 \ M_0 \ yr^{-1}$, following the formula proposed in **Rose+2018**;
- 2. A radio emission co-spatial to the innermost outflow emission;
- 3. An agreement with powerful sources collected in Fiore+2017;

A DETAILED STUDY ON J0945: THE EXTENDED EMISSION

? ; ?

OUTFLOW PROPERTIES

To investigate the mechanisms driving the outflows and their impact we have to measure the mass and energy outflow rates (\dot{M}_{out} and \dot{E}_{kin}).

Following Rose+2018:
$$\dot{M}_{out} \alpha = \frac{V_{out}}{n_e R_{out}}$$

According to Harrison+2014 & Ramos Almeida+2019: $\dot{E}_{kin} = \frac{1}{2} \dot{M}_{out} (v_{out}^2 + 3\sigma^2)$

THE 5 QSO2 OBSERVED WITH MEGARA: CONCLUSIONS

To investigate the mechanisms driving the outflows and their impact we have to measure the mass and energy outflow rates (\dot{M}_{out} and \dot{E}_{kin}).

Following Rose+2018:
$$\dot{M}_{out} \alpha$$

Two estimation:

1. classical technique of the density-sensitive optical doublet ratio of [S II] $\lambda\lambda$ 6716,6731 (Osterbrock & Ferland, 2006);

2. the flux ratios of the trans-auroral lines (Holt et al., 2011).

According to Harrison+2014 & Ramos Almeida+2019: $\dot{E}_{kin} = \frac{1}{2} \dot{M}_{out} (v_{out}^2 + 3\sigma^2)$

THE 5 QSO2 OBSERVED WITH MEGARA: CONCLUSIONS

THE 5 QSO2 OBSERVED WITH MEGARA: CONCLUSIONS

2. the flux ratios of the trans-auroral lines (Holt et al., 2011).

According to Harrison+2014 & Ramos Almeida+2019: $\dot{E}_{kin} = \frac{1}{2} \dot{M}_{out} (v_{out}^2 + 3\sigma^2)$

THE AGN FEEDBACK

Parameter definitions for a random pixel of J1430

THE ROLE OF AGN FEEDBACK IN 5 LOCAL TYPE-2 QUASARS: THE EXTENDED EMISSION

A NON-PARAMETRIC ANALYSIS

