Claudia Maraston University of Portsmouth UK

GALAXY SCALING RELATIONS THROUGH STELLAR POPULATION MODELS

AKA ALL WHAT'S OUTSIDE THE BH

Bid4Best - Southampton 2024

Stellar mass

Remnant mass

Star formation history

Redshift

Age and formation epoch

Dark Matter

Chemistry

James Webb Deep Field, Pontoppidan et al. 2022

Stellar mass

James Webb Deep Field, Pontoppidan et al. 2022

Outline

Galaxy physical properties from stellar population models

Degeneracies and iceberg effect

Derivation vs Prior

Applications:

- properties of real galaxies
- galaxy simulations
- linking the two

Model input physics

- ENERGY per star mass
- TIMESCALE
- SPECTRA
- Initial Mass Function IMF
- Remnant Mass Distribution mass and type of remnant

Extras: binaries, emission-lines/nebular continuum

Stellar evolution as a function of redshift

C Maraston in "Galaxy ancestors", Burkina Faso 2010

Stellar Spectra - empirical libraries

MaStar: the MaNGA stellar library

Yan et al. 2019

• 60,000 spectra (previously 900 spectra, MILES; XShooter-based, ~800)

Figure 3. Example per-visit spectra for some main sequence stars in the MaStar Library.

www.icg.port.ac.uk/MaStar

MaStar Stellar Population Models

12/06/2020: UPDATE to version v0.2

The MaStar Stellar Population Models (Maraston et al 2020) use the new SDSS-based stellar library MaStar (Yan et al 2019) to predict the spectral energy distributions of stellar population models with various chemical composition and age. Maraston et al. 2020, 24 MNRAS

The age/metallicity degeneracy

Classically (Worthey94): a metal-rich young SSP looks like a less metal-rich older one

The age/metallicity degeneracy

Classically (Worthey94): a metal-rich young SSP looks like a less metal-rich older one

Revised (Maraston05): adding the **near-IR helps breaking the degeneracy** because of the AGB stars

The light average problem: Outshine from the youngest stellar generations

The light average problem: Outshine from the youngest stellar generations

Galaxy mass or burst mass?

Pforr, Maraston, Tonini 2012

Table 2. Derived ages and stellar masses for a $10^{11} M_{\odot}$ galaxy composed of a 5 Gyr old population and a low percentage – 1 or 10 per cent – of a younger population. Burst characteristics are listed in the first column, while the second and third columns list the derived ages and masses.

Burst characteristics	Derived age	Derived M^* (log M _{\odot})
Burst no reddening		
1 per cent 1 Gyr	3.75 Gyr	10.85
1 per cent 100 Myr	4.5 Gyr	10.86
1 per cent 10 Myr	4.5 Gyr	10.74
1 per cent 1 Myr	15 Myr	9.23
10 per cent 1 Gyr	2.75 Gyr	10.83
10 per cent 100 Myr	404 Myr	10.42
10 per cent 10 Myr	8.7 Myr	9.91
10 per cent 1 Myr	6.6 Myr	9.93
Burst + reddening		
1 per cent 1 Gyr	3.5 Gyr	10.90
1 per cent 100 Myr	4.5 Gyr	10.86
1 per cent 10 Myr	7.9 Myr	9.28
1 per cent 1 Myr	13.8 Myr	9.30
10 per cent 1 Gyr	2.75 Gyr	10.83
10 per cent 100 Myr	6.3 Myr	9.69
10 per cent 10 Myr	8.7 Myr	9.91
10 per cent 1 Myr	6.6 Myr	9.93

Applications

Properties of real galaxies

 Theoretical spectra for model galaxies from galaxy formation simulations

What is the star formation history of a galaxy?

What is the star formation history of a galaxy?

Derivation vs prior

Portsmouth Value Added Catalogue – VAC Population model fit to SDSS-IV IFU galaxy spectra – Neumann et al. 2022, MNRAS

Dr. Justus Neuman

Full spectral fitting code Firefly, www.icg.port.ac.uk/firefly/ SDSS-IV/MaNGA data Bundy et al. 2016 Portsmouth Value Added Catalogue – VAC Population model fit to SDSS-IV IFU galaxy spectra – Neumann et al. 2022, MNRAS

Full spectral fitting code Firefly, www.icg.port.ac.uk/firefly/ SDSS-IV/MaNGA data Bundy et al. 2016

IMaNGA: High-resolution spectra of galaxy models from cosmological, hydro-simulations Illustris-TNG50

Lorenza Nanni, PhD, Portsmout

Nanni, Thomas, Trayford, Maraston, Piilepich, Yan et al. 2022; 2023, 2024

IMaNGA vs real MaNGA - aka mock-simulated vs real galaxies Age gradients: much flatter in simulations vs data, especially massive spirals and Es - lenticular do well

Nanni et al. 2024, MNRAS, 527, 6419

IMaNGA vs real MaNGA - aka mock-simulated vs real galaxies Metallicity gradients: spot on for massive early types, steeper in spirals

Nanni et al. 2024, MNRAS, 527, 6419

Spirals

Summary

- Stellar population models determine galaxy properties and scaling relations
- Age/dust degeneracy and iceberg effect insidious especially for AGN/QSO leads to underestimate M*
- Non parametric model fitting allows to derive a galaxy star formation history avoiding a templatebias approach
- Insights on galaxy evolution from cosmological simulations placed in the 'observer frame'