Brivael Laloux

National Observatory of Athens – Durham University

Co-authors: Antonis Georgakakis, David Alexander, Johannes Buchner

The impact of obcuration on the accretion rate of AGN

This work has been supported by the EU H2020-MSCA-ITN-2019 Project 860744

"BiD4BESt: Big Data applications for black hole Evolution STudies."

Image: ESO/M. Kornmesser

A significant fraction of supermassive black holes (SMBH) grow their mass behind clouds of gas and dust that absorb the radiation. (Ueda+14, Ricci+15)

A significant fraction of supermassive black holes (SMBH) grow their mass behind clouds of gas and dust that absorb the radiation. (Ueda+14, Ricci+15)

That is the **obscuration**.

A significant fraction of supermassive black holes (SMBH) grow their mass behind clouds of gas and dust that absorb the radiation. (Ueda+14, Ricci+15)

That is the **obscuration**.

In the simplest unification model, **only** the **orientation** maters.

A significant fraction of supermassive black holes (SMBH) grow their mass behind clouds of gas and dust that absorb the radiation. (Ueda+14, Ricci+15)

That is the **obscuration**.

In the simplest unification model, **only** the **orientation** maters.

Obscured and unobscured SMBH should grow similarly.

A significant fraction of supermassive black holes (SMBH) grow their mass behind clouds of gas and dust that absorb the radiation. (Ueda+14, Ricci+15)

TI

That is the **obscuration**.

In the simplest unification model, **only** the **orientation** maters.

Obscured and unobscured SMBH should grow similarly.

Other theories could expect differences:

- Evolution model (Hopkins+08)
- Radiation-regulated model (Ricci+17)

Eddington ratio:
$$\lambda_{
m Edd} = rac{L_{
m bol}}{L_{
m Edd}} \propto rac{L_{
m bol}}{M_{
m BH}}$$

Eddington ratio:
$$\lambda_{
m Edd} = rac{L_{
m bol}}{L_{
m Edd}} \propto rac{L_{
m bol}}{M_{
m BH}}$$

But M_{BH} is difficult to constrain for obscured sources

Eddington ratio:
$$\lambda_{\rm Edd} = \frac{L_{\rm bol}}{L_{\rm Edd}} \propto \frac{L_{\rm bol}}{M_{\rm BH}}$$
But M_{\rm BH} is difficult to constrain
for obscured sourcesAccretion rate: $\lambda = \frac{L_{\rm X}}{M_{\star}} \propto \lambda_{\rm Edd}$ $M_{BH} \sim 0.002 M^*$

Specific accretion rate distribution (SARD): Probability of a galaxy, at a certain redshift with specific stellar mass M*, to host an AGN with a given accretion rate λ and with a certain **obscuration N_H**.

Dataset:

Chandra:

- COSMOS-Legacy: 2641 sources
- AEGIS: 783 sources
- CDFS: 418 sources

Total: 3842 sources

Spectral Energy Distribution (SED) fit

Recipe of SARD:

Recipe of SARD: Galaxy mass function $N_{gal}(M^*|z)$ Spectral Energy Distribution (SED) fit Sensitivity curves $P_{detection}(z, L_X, N_H)$ Stellar mass M* Eddington Accretion rate SARD $P(\lambda, N_H \mid z, M^*)$ ratio λ L_x / M^* X-ray luminosity $L_{x}(2-10 \text{keV})$ Obscuration X-ray spectroscopy N_H

Observations:

 Similar shapes => similar accretion mechanism

Observations:

- Similar shapes => similar accretion mechanism
- Higher normalisation for obscured AGN => majority of obscured AGN

Observations:

- Similar shapes => similar accretion mechanism
- Higher normalisation for obscured AGN => majority of obscured AGN
- Shift toward higher λ with redshift => faster accretion at higher redshift ("downsizing")

Obscured vs **Unobscured** normalised SARD

Obscured vs **Unobscured** normalised SARD

Obscured AGN fraction variation

Obscured AGN fraction variation

Similar behaviour up to $log\lambda < -1$

Obscured AGN fraction variation

The λ -break value of the obscured AGN fraction increases with redshift.

Evolution of the **blow-out region**

Evolution of the **blow-out region**

Evolution of the **blow-out region**

Increased incidence of outflows Or Increased ISM obscuration contamination

Strong increase of the fraction of AGN in the blow-out region

Main results

- Similar SARD for obscured and unobscured AGN => Similar accretion mechanisms
- Higher-λ offset for unobscured SARD → Reject simplest orientation model
- The λ-break of the obscured AGN fraction and the blow-out fraction increase with redshift plncreased incidence of outflows or ISM obscuration contamination

Thank you for your attention!

Back up slides

Models and Algorithms

X-ray:

- X-ray fitting algorithm: BXA (Buchner+14)
- X-ray model: Uxclumpy (Buchner+19)

Infrared:

• SED fitting algorithm: - CIGALE

(Boquien+19, Yang+22)

- SED models: Stellar emission
 - Star-formation emission
 - Dusty torus IR emission

https://github.com/JohannesBuchner/xars/blob/master/doc/uxclumpy.rs