Star formation and feedback in massive galaxies at cosmic noon

(she/her) Anniversary Fellow @ UoS

Southampton, 7th February 2024

Credit: ALMA (ESO/NAOJ/NRAO); NRAO/AUI/NSF, B. Saxton

Molecular gas properties of star-forming galaxies at cosmic noon

Very high gas fractions (e.g. Tacconi et al. 2020; Decarli et al. 2020)

 Higher molecular gas excitation in z~2 main-sequence galaxies than MW disks (e.g., Daddi et al. 2015), but lower than starbursts (e.g., Bothwell+13)

 Starbursts more efficient than main-sequence galaxies in converting gas into stars (SFE = SFR / M_{qas} , e.g., Sargent+14, Silverman+15)

Starbursting galaxies within the Main Sequence

Main-sequence galaxies with starbursting properties (compact dust/gas/star formation; high ISM density, very short t_{depl}, e.g. Barro+17; Popping+17; Tadaki+17; Elbaz+18; Brusa+18), gas poor, some with rotating disks (but very compact!!!, e.g., Talia+18)

Barro+17

Popping+17

Molecular gas in massive galaxies at cosmic noon

Molecular gas physics

Valentino, Daddi, Puglisi+20

- Large statistics (~100 z~1.3 galaxies on/off MS)
- Multiple CO/[CI] lines
- Moderate resolution (0.9'')
- COSMOS multi-wavelength information

Molecular gas sizes

Stellar vs molecular gas sizes

• Compact sub-millimetre sizes in ~30% of "typical main-sequence disks"

• These "sub millimetre" compact galaxies have molecular gas sizes ~3.4x smaller than the stellar size.

 No clear dependence of sub-millimetre compactness on main-sequence position.

• More than **50% sub-mm/CO compact within the** main-sequence scatter above $M^* \sim 10^{11} M_{\odot}$, similar to continuum (Elbaz+18, Franco+20, Tadaki+20, Gomez-Gujiarro+22, Gullberg+19) and radio (but ~10%, Jiménez-Andrade+19).

A diversity of molecular gas properties within the MS

Sub-millimetre compact galaxies on the main sequence have **enhanced** excitation, and lower t_{depl} / enhanced SFE than main sequence galaxies.

Molecular gas excitation

Depletion time/SFE

A diversity of molecular gas properties within the MS

Sub-mm compact galaxies on the main sequence have **lower gas fractions** than their extended counterparts (see also Franco+20; Gomez-Gujiarro+22)

Puglisi+21b

Star formation and AGN activity

Circosta+21, incl. Puglisi See also Bertola+ in prep, incl. Puglisi

Star formation and AGN activity

- ~40% of galaxies in our survey host an AGN (X-ray and/or mid-IR)
- The position of galaxies in the integrated Schmidt-Kennicutt plane correlates with the AGN fraction, suggesting lower CO **Iuminosities / SFE enhancement in AGN hosts.**

Valentino, Daddi, Puglisi+21

Sub-mm compact galaxies and AGN

- Signatures of AGN in 45 ± 13% of sub-millimetre **compact galaxies** as oppsed to $25 \pm 11\%$ of the extended galaxies.
- Sub-mm compactness distribution of galaxies with/ without AGN are different at $\sim 2\sigma$ level

Sub-mm compact galaxies and AGN

AGN "effect" on SFE

Valentino, Daddi, Puglisi+21

A fundamental connection between bulge growth and AGN feeding?

Sub-mm size "effect" on SFE

Puglisi+21b

What causes low gas fractions in galaxies?

- Massive starburst galaxy at z~1.4
- $46 \pm 13\%$ of the total molecular gas mass expelled
- $t_{depl, host} = M_{mol,n} / SFR \sim 40 Myr$

What causes low gas fractions in galaxies?

What causes low gas fractions in galaxies?

It is challenging to explain the extreme energetics and low excitation conditions of the expelled molecular gas with an outflow scenario

AGN-driven winds and merger-driven tidal tails

- The gas conditions and merging nature of the galaxy suggest that the broad component is likely tidally-ejected material
- Winds and tidally-ejected gas can present similar observational signatures (see also Spilker+22; Baron+24)

- ALMA revealed a sizable population of sub-mm compact galaxies within the scatter of the main sequence at cosmic noon with ISM properties similar to starbursts and low gas fractions.
- connection between bulge growth and AGN feeding.
- ejection mechanisms.

• Sub-mm compact galaxies are more likely to host an AGN, and both sub-mm compact galaxies and AGN hosts have low depletion times and enhanced star formation efficiencies. This might suggest a fundamental

• AGN and major mergers can both eject gas from galaxies via winds and tidal tails, with similar observational features in 1D spectra. This stresses the importance of spatially-resolved IFU spectroscopy to study gas

