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e Why do they matter?
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Accretion Disk Winds: Why Should We Care?

e Universal

YSO Compact Binary AGN




 Significant sinks For

= Mass:

= Energy:
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o Disk winds might be requiredto drive accretion!



e Veiling

A Disk Wind Model for TDEs (Parkinson, Knigge et al 2020)
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e AGN Unification

Elvis 2000

A Structure for Quasars
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e Feedback

Haering & Rix (2004)

McConnell & Ma (2013)
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Radiation-Driven Mass Loss and the Physics of
Line Driving







Scattering by free electrons: the Eddington limit

e At, gas will be blown away by radiation pressure on free electrons



Scattering by free electrons: the Eddington limit

e At , gas will be blown away by radiation pressure on free electrons

Scattering by bound electrons: line-driving

e A bound electron presents a cross section to a photon near line center that is
many orders of magnitude larger than the cross section of a free electron



The CAK Ansatz

The acceleration solely due to electron scattering is

(]:tot> (neae>
ge =
c p

Write grad,tot as a multiple of g,

Graditot = Ye M

M is the so-called "Force multiplier"

Then try to parameterize the force multiplier as

M =kt

where t is a measure of the line optical depth

= IMPORTANT: t depends on the velocity gradient






Line-by-line calculations show that this is a pretty good approximation, but the relationship asymptotes
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A-T=31kK p=10"2gcm™3
— =Saturation
= =Transition
— =Power-Law
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Crucially, Mmax =~ constant ~ 2000 (Gayley 1995)%
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Line-Driving REQUIRES

T'gig = L/LEdd > ~ 5 X 1074

1
Mmam

M.z is the most we can hope to get out of line-driving, over and above what we
can get from electron scattering



Line-Driven Disk Winds



Challenges: Geometry & Dynamics

e No spherical symmetry

e Rotation mustbe important

 The vertical component of gravity initially increases: g, X ﬁ
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Challenges: lonization / Radiative Transfer

e Complex geometry & kinematics make ionization & RT computationally difficult
= e.g. dv/dr becomes a tensor
e Typically have multiple radiation sources with different geometries and SEDs
= Accretion disk
= Central source
o Accreting object
o Boundary layer

o Corona

o soee



Challenges: (Radiation)Hydrodynamics

o Hydrodynamics and ionization/RT are strongly and non-linearly coupled
= Hydrodynamics depends strongly on radiation force
= Radiation force depends strongly

o temperature

o velocity field

o density structure
o ionization



Previous Efforts: Detailed Hydrodynamics, Approximate lonization &
RT

Detailed hydrodynamics

= At least 2-D + rotation:

o Proga+98,99,00,04, Pereyra+03, Nomura+16,18,20,21
= Some 3-D:

o Dyda+18ab

Detailed radiation geometry, but various levels of "dv/dr accuracy"

"Quasi-1D", "quasi-optically-thin" RT & ionization with self-shielding

At best two frequency bands

= "UV" — line force
= "X-ray" — ionization



Previous Results: Basic Characteristics of Line-Driven DIsk Winds

e An accreting white dwarf without (left) and with (right) a strong central source | | |

log density

log density

z (r)

from Proga 1999

e Most of the mass tends to be carried away in a fast "stream"”

e Pure disk winds tend to be highly non-steady



e an X-ray irradiated AGN | Wide view | (both from Proga+00) | Zoom
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e anear-Eddington AGN
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Previous Results: Observables

e Hydro models seem to do a pretty reasonable job at matching (some) observables

e UV line profiles ("BALQSOs")
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HOWEVER: All of these results are based on quasi-1D radiative
transfer and/or ionization calculations






HOWEVER: All of these results are based on quasi-1D radiative
transfer and/or ionization calculations

THIS|IS|WHY

WE CAN'T HAVE NIGE THINGS |






Our contribution: making everything worse

(by adding more physics)

“PYTHON”- a MC ionization and

radiative transfer code

‘entral Source (Long & Knigge 2002;
C S Higginbottom+13+14+17+18+19+20;
Matthews+15+16+17+20,

Mangham+17+19)

Accretion Disk
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PYTHON (maybe soon "Pyrite”)



can calculate ionization state and observables (spectra, line profiles,
reverberation signatures) for any given outflow model

comes with several built-in "kinematic" (parameterized) spherical and disk wind
models

= user-specified parameters define geometry, velocity, velocity, radiation
field

can also read in models (e.g. from hydrodynamic simulations)

physics included allows a wide range of applications, including:



Back to line-driving:

Are existing models with approximate ionization and radiative
transfer "good enough™?

e A snapshot from Proga & Kallman 2004...
Higginbottom et al. 2014, data from Proga & Kallman 2004
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e ...now reprocessed with full 2-D ionization and RT

ionization parameter from Higginbottom et al. 2014
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o Shielding does not work in 2D RT as it did in quasi-1D

= the ionizing photons just scatter around the shield



o Shielding does not work in 2D RT as it did in quasi-1D

= the ionizing photons just scatter around the shield

e The winds calculated in the hydro simulations could not exist IRL

= they would be overionized
= no suitable driving lines
= no wind



o Shielding does not work in 2D RT as it did in quasi-1D

= the ionizing photons just scatter around the shield

e The winds calculated in the hydro simulations could not exist IRL

= they would be overionized
= no suitable driving lines
= no wind

e This does not mean line-driving cannot work

= just that we do have to face up to fully coupled, 2-D, multi-wavelength
radiation-hydrodnamics



Radiation-hydrodynamic simulations of line-
driven disk winds:

including multi-dimensional, full-spectrum
radiative transfer and ionization

Basic idea:

e Couple PYTHON with PLUTO via operator-splitting
e Calculate new ionization structure after every ~ 1000 hydro time-steps
e work out corresponding force multipliers by summing over huge Kurucz line list

e iterate to convergence



Start with the "simplest” problem: CVs (accreting white dwarfs)

¢ Pros

Standard Shakura-Sunyaev disk

Other radiation sources

o probably negligible (BL / WD)

o similar SED to disk (comparable T, /)

Small dynamic range
o Ryisr/Rwp ~ 30

No relativistic effects

No significant B-fields

e Cons

L/LEdd ~ 1/1000



Proga, Stone & Drew 1995; Dyda & Proga 2018
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Our new, (almost) kitchen-sink simulations: much weaker outflows!

Higginbottom, Scepi, Knigge et al. 2023
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Higginbottom, Scepi, Knigge et al. 2023
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Why is the wind weaker than found in previous simulations?

¢ higher ionization state — lower force multipliers
Higginbottom, Scepi, Knigge et al. 2023

Kitchen-Sink Approximate Ionization & RT
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(How) does this translate to QSOs and AGN?

e This is hot off the press -- enjoy with caution!

e First results will be published "soon" in Scepi, Knigge et al. (2024)



Pure Shakura-Sunyaev Disks — L/ Lg4q ~ 0.8 — no separate X-
ray source

Mpy = 108 M, Mpy = 10° M,

uuuuu



Pure Shakura-Sunyaev Disks — L/ Lggq =~ 0.8 — with (weak) X-
ray source

Mpy = ].OSM@ - Mpy = ]-OQM@"
Lx/Lgist, ~ 1% Lx/Laisk ~ 2%

M windg S 2 X 1072 M gc




Summary

e Line-driven winds are awesome

The underlying physics is pretty well understood, ...

... but they are really difficult to simulate in > 1-D, ...

e But we must face this if we want to have a physical understanding of feedback

First results:

= X-ray weak QSOs can definitely produce powerful feedback
= But what about lower-Mpgg, lower—M, higher L, AGN?



