Line-Driven Accretion Disk Winds

Christian Knigge

University of Southampton

Outline

Disk Winds

• Why do they matter? The Physics of Line-Driving

- Free vs Bound Electrons
- Force Multipliers

Line-Driven Disk Winds

- Previous efforts
- New results

Accretion Disk Winds: Why Should We Care?

• Significant sinks for

Mass:

$$0.1 \lesssim rac{{\dot M}_w}{{\dot M}_{input}} \lesssim 10$$

Energy:

$$0.1 \lesssim rac{L_{k,w}}{L_{acc}} \lesssim 10$$

Angular Momentum:

$$0.1 \lesssim rac{{\dot J}_w}{{\dot J}_{disk}} \lesssim 1$$

• Disk winds might be *required* to drive accretion!

Veiling

A Disk Wind Model for TDEs (Parkinson, Knigge et al 2020)

• Feedback

Radiation-Driven Mass Loss and the Physics of Line Driving

Scattering by *free* electrons: the Eddington limit

• At , gas will be blown away by radiation pressure on free electrons

Scattering by *free* electrons: the Eddington limit

• At , gas will be blown away by radiation pressure on free electrons

Scattering by *bound* electrons: line-driving

• A bound electron presents a cross section to a photon near line center that is many orders of magnitude larger than the cross section of a free electron

The CAK Ansatz

• The acceleration solely due to *electron scattering* is

$$g_e \;=\; \left(rac{\mathcal{F}_{tot}}{c}
ight)\; \left(rac{n_e\,\sigma_e}{
ho}
ight)$$

• Write $\mathbf{g_{rad,tot}}$ as a multiple of g_e

$$g_{rad,tot}~=~g_e~\mathcal{M}$$

- + ${\mathcal M}$ is the so-called "force multiplier"
- Then try to parameterize the force multiplier as

 ${\cal M}~=~k~t^{-lpha}$

- where t is a measure of the line optical depth
 - IMPORTANT: t depends on the velocity gradient

Line-by-line calculations show that this is a pretty good approximation, but the relationship asymptotes

from Poniatowski et al (2022)

from Gayley (1995)

Line-Driving *REQUIRES*

$$\Gamma_{Edd} = L/L_{Edd} ~>~ rac{1}{\mathcal{M}_{max}} ~\simeq~ 5 imes 10^{-4}$$

 \mathcal{M}_{max} is the most we can hope to get out of line-driving, over and above what we can get from electron scattering

Line-Driven *Disk* Winds

Challenges: Geometry & Dynamics

- No spherical symmetry
- Rotation *must* be important
- The vertical component of gravity initially **increases**: g_z o

$$\propto rac{z}{\left(R_{cyl}^2+z^2
ight)^{3/2}}$$

Challenges: Ionization / Radiative Transfer

- Complex geometry & kinematics make ionization & RT computationally difficult
 - e.g. dv/dr becomes a *tensor*
- Typically have *multiple* radiation sources with different geometries and SEDs
 - Accretion disk
 - Central source
 - Accreting object
 - Boundary layer
 - Corona
 - °

Challenges: (Radiation)Hydrodynamics

- Hydrodynamics and ionization/RT are strongly and non-linearly coupled
 - Hydrodynamics depends strongly on radiation force
 - Radiation force depends strongly
 - temperature
 - velocity field
 - density structure
 - \circ ionization

Previous Efforts: Detailed Hydrodynamics, Approximate Ionization & RT

- Detailed hydrodynamics
 - At least 2-D + rotation:
 - Proga+98,99,00,04, Pereyra+03, Nomura+16,18,20,21
 - Some 3-D:
 - Dyda+18ab
- Detailed radiation geometry, but various levels of "dv/dr accuracy"
- "Quasi-1D", "quasi-optically-thin" RT & ionization with self-shielding
- At best two frequency bands
 - "UV" \rightarrow line force
 - "X-ray" \rightarrow ionization

Previous Results: Basic Characteristics of Line-Driven Disk Winds

• An accreting white dwarf without (left) and with (right) a strong central source ||| :---: ||

from Proga 1999

- Most of the mass tends to be carried away in a fast "stream"
- Pure disk winds tend to be highly non-steady

| (both from Proga+00) | Zoom

• a near-Eddington AGN

from Nomura+20

Previous Results: Observables

- Hydro models seem to do a pretty reasonable job at matching (some) observables
- UV line profiles ("BALQSOs")

from Proga & Kallman 2004

HOWEVER: All of these results are based on quasi-1D radiative transfer and/or ionization calculations

HOWEVER: All of these results are based on quasi-1D radiative transfer and/or ionization calculations

Our contribution: making everything worse

(by adding more physics)

PYTHON (maybe soon "Pyrite")

- can calculate ionization state and observables (spectra, line profiles, reverberation signatures) for any given outflow model
- comes with several built-in "kinematic" (parameterized) spherical and disk wind models
 - user-specified parameters define geometry, velocity, velocity, radiation field
- can also read in models (e.g. from hydrodynamic simulations)
- physics included allows a wide range of applications, including:

Back to line-driving:

Are existing models with approximate ionization and radiative transfer "good enough"?

• A snapshot from Proga & Kallman 2004...

• ...now reprocessed with full 2-D ionization and RT

ionization parameter from Higginbottom et al. 2014

• Shielding does not work in 2D RT as it did in quasi-1D

• the ionizing photons just scatter around the shield

- Shielding does not work in 2D RT as it did in quasi-1D
 - the ionizing photons just scatter around the shield
- The winds calculated in the hydro simulations could not exist IRL
 - they would be overionized
 - no suitable driving lines
 - no wind

- Shielding does not work in 2D RT as it did in quasi-1D
 - the ionizing photons just scatter around the shield
- The winds calculated in the hydro simulations could not exist IRL
 - they would be overionized
 - no suitable driving lines
 - no wind
- This does not mean line-driving cannot work
 - just that we do have to face up to fully coupled, 2-D, multi-wavelength radiation-hydrodnamics

Radiation-hydrodynamic simulations of linedriven disk winds: including multi-dimensional, full-spectrum radiative transfer and ionization

Basic idea:

- Couple PYTHON with PLUTO via operator-splitting
- Calculate new ionization structure after every $\simeq 1000$ hydro time-steps
- work out corresponding force multipliers by summing over huge Kurucz line list
- iterate to convergence

Start with the "simplest" problem: CVs (accreting white dwarfs)

• Pros

- Standard Shakura-Sunyaev disk
- Other radiation sources
 - probably negligible (BL / WD)
 - $\,\circ\,$ similar SED to disk (comparable T_{eff})
- Small dynamic range

$$\circ~R_{disk}/R_{WD}\simeq 30$$

- No relativistic effects
- No significant B-fields
- Cons
- $L/L_{Edd}\simeq 1/1000$

Our new, (almost) kitchen-sink simulations: much weaker outflows!

Higginbottom, Scepi, Knigge et al. 2023

Model	Comments	$\dot{M}_{ m acc}$ [\dot{M}_{\odot} yr ⁻¹]	T _{d,visc} (R)	Force Multiplier	$\frac{L_{BL}}{L_{disc}}$	T _{BL} [10 ⁵ K]	$\frac{L_{tot}}{L_{Edd}}$	PSD DP	$\dot{M}_{ m wind}$ [M $_{\odot}$ yr ⁻¹]	$\begin{bmatrix} v_r \\ km \ s^{-1} \end{bmatrix}$
HK22D	Fiducial Model	$\pi \times 10^{-8}$	Shakura-Sunyaev	self-consistent	0	0	1×10^{-3}	3 B	4.6×10^{-14}	1700
HK22Df	No RT & ionization	$\pi \times 10^{-8}$	Shakura-Sunyaev	fixed k and α	0	0	1×10^{-3}	3 B	1.6×10^{-11}	4000

Higginbottom, Scepi, Knigge et al. 2023

Why is the wind weaker than found in previous simulations?

- higher ionization state ightarrow lower force multipliers Higginbottom, Scepi, Knigge et al. 2023

(How) does this translate to QSOs and AGN?

- This is hot off the press -- enjoy with caution!
- First results will be published "soon" in Scepi, Knigge et al. (2024)

Pure Shakura-Sunyaev Disks — $L/L_{Edd}\simeq 0.8$ – no separate X-ray source

$$M_{BH} = 10^8 M_{\odot}$$

$$M_{BH} = 10^9 M_{\odot}$$

$$M_{BH} = 10^9 M_{\odot}$$

Pure Shakura-Sunyaev Disks $-L/L_{Edd}\simeq 0.8$ – with (weak) X-ray source

$$M_{BH} = 10^8 M_{\odot}$$
 -- $M_{BH} = 10^9 M_{\odot}$ -- $L_X/L_{disk} \simeq 1\%$ $M_{BH} = 2\%$

Summary

- Line-driven winds are awesome
- The underlying physics is pretty well understood, ...
- ... but they are *really* difficult to simulate in > 1-D, ...
- But we **must** face this if we want to have a *physical* understanding of feedback
- First results:
 - X-ray weak QSOs can **definitely** produce powerful feedback
 - But what about lower- M_{BH} , lower- \dot{M} , higher L_x AGN?